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ABSTRACT

Network quantization is one of the most hardware friendly techniques to enable
the deployment of convolutional neural networks (CNNs) on low-power mobile
devices. Recent network quantization techniques quantize each weight kernel in a
convolutional layer independently for higher inference accuracy, since the weight
kernels in a layer exhibit different variances and hence have different amounts
of redundancy. The quantization bitwidth or bit number (QBN) directly decides
the inference accuracy, latency, energy and hardware overhead. To effectively
reduce the redundancy and accelerate CNN inferences, various weight kernels
should be quantized with different QBNs. However, prior works use only one
QBN to quantize each convolutional layer or the entire CNN, because the design
space of searching a QBN for each weight kernel is too large. The hand-crafted
heuristic of the kernel-wise QBN search is so sophisticated that domain experts
can obtain only sub-optimal results. It is difficult for even deep reinforcement
learning (DRL) Deep Deterministic Policy Gradient (DDPG)-based agents to find
a kernel-wise QBN configuration that can achieve reasonable inference accuracy.
In this paper, we propose a hierarchical-DRL-based kernel-wise network quanti-
zation technique, AutoQ, to automatically search a QBN for each weight kernel,
and choose another QBN for each activation layer. Compared to the models quan-
tized by the state-of-the-art DRL-based schemes, the same models quantized by
AutoQ reduce the inference latency by 54.06%, and decrease the inference energy
consumption by 50.69% averagely, while achieving the same inference accuracy.

1 INTRODUCTION

Although convolutional neural networks (CNNs) have been the dominant approach (Sandler et al.,
2018) to solving a wide variety of problems such as computer vision and recommendation sys-
tems, it is challenging to deploy CNNs to mobile devices having only limited hardware resources
and tight power budgets, due to their huge essential computing overhead, e.g., an inference of Mo-
bileNetV2 (Sandler et al., 2018) involves 6.9M weights and 585M floating point operations.

Several approaches such as pruning (He et al., 2018) and low-rank approximation (Denton et al.,
2014) are proposed to reduce the inference computing overhead of CNNs. Network quantiza-
tion (Wang et al., 2019; Lin et al., 2017) becomes one of the most hardware friendly CNN ac-
celeration techniques by approximating real-valued weights and activations to QBN -bit fixed-point
representations, and performing inferences using cheaper fixed-point multiple-accumulation (MAC)
operations, where QBN is the quantization bit number.

Instead of using one QBN for the whole CNN, the layer-wise network quantization (Wang et al.,
2019; Elthakeb et al., 2018) assigns a QBN to the weights of each convolutional layer, and searches
another QBN for the activations of the same layer to decrease the inference computing overhead.
But the inference cost of the layer-wise quantized CNNs is still prohibitive for low-power mobile de-
vices powered by batteries. Recent works (Zeng et al., 2019; Choukroun et al., 2019b; Zhang et al.,
2018; Li et al., 2019; Krishnamoorthi, 2018; Sasaki et al., 2019) find that various weight kernels of a
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Figure 1: The weight distribution of kernels.
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Figure 2: Inference accuracy and latency.

convolutional layer (ResNet-18) exhibit different variances shown in Figure 1 and hence have differ-
ent amounts of redundancy. Therefore, they quantize each weight kernel independently for higher
accuracy by calculating a QBN -element scaling factor vector for each kernel, rather than globally
quantize all the kernels of a layer as a whole. To reduce different amounts of redundancy among
different weight kernels, these kernel-wise network quantization techniques should have searched a
QBN for each kernel of each layer in a CNN. However, the search space of choosing a QBN for each
weight kernel is too large, so prior kernel-wise network quantization (Zeng et al., 2019; Choukroun
et al., 2019b; Zhang et al., 2018; Li et al., 2019; Krishnamoorthi, 2018; Sasaki et al., 2019) still uses
the same QBN for the entire CNN. As Figure 2 shows, compared to the layer-wise quantized model,
on the same FPGA accelerator (Umuroglu et al., 2019a), the kernel-wise quantized model (assigning
a QBN to each weight kernel and choosing a QBN for each activation layer) improves the inference
accuracy by ∼ 2% (ImageNet) with the same computing overhead (inference latency).

How to decide a QBN for each weight kernel is the most important task of the kernel-wise network
quantization, since the QBNs have a large impact on the inference accuracy, latency and hardware
overhead. Determining a QBN for each weight kernel via hand-crafted heuristics is so sophisticated
that even machine learning experts can obtain only sub-optimal results. Recent works (Wang et al.,
2019; Elthakeb et al., 2018) automatically select a QBN for each layer of a CNN through a deep
reinforcement learning (DRL) agent without human intervention. However, it is still difficult for
low-power mobile devices such as drones and smart glasses to adopt the layer-wise quantized CNN
models. These mobile devices are very sensitive to the bit-width of fixed-point MAC operations
and memory access during inferences due to their limited battery lifetime and hardware resources.
Kernel-wise network quantization assigning a QBN to each weight kernel and searching a QBN for
each activation layer of a CNN becomes a must to enable the efficient deployment of deep CNNs
on mobile devices by reducing the inference computing overhead. Although it is straightforward
to perform kernel-wise quantization via DRL, it takes ultra-long time for a DRL agent to find a
proper QBN for each weight kernel of a CNN. As CNN architectures are becoming deeper, it is
infeasible to employ rule-based domain expertise or conventional DRL-based techniques to explore
the exponentially enlarging search space of kernel-wise network quantization.

In this paper, we propose a hierarchical-DRL-based agent, AutoQ, to automatically and rapidly
search a QBN for each weight kernel and choose a QBN for each activation layer of a CNN for
accurate kernel-wise network quantization. AutoQ comprises a high-level controller (HLC) and a
low-level controller (LLC). The HLC chooses a QBN for each activation layer and generates a goal,
the average QBN for all weight kernels of a convolutional layer, for each layer. Based on the goal,
the LLC produces an action, QBN, to quantize each weight kernel of the layer. The HLC and LLC
simultaneously learn by trials and errors, i.e., penalizing inference accuracy loss while rewarding a
smaller QBN. We also build a state space, a goal and an action space, an intrinsic reward and an
extrinsic reward for AutoQ. Instead of proxy signals including FLOPs, number of memory access
and model sizes, we design the extrinsic reward to take the inference latency, energy consumption
and hardware cost into consideration.

2 BACKGROUND AND RELATED WORK

Quantization. Recent works (Lin et al., 2016; Zhou et al., 2017; Jacob et al., 2018; McKinstry et al.,
2018; Zhang et al., 2018) quantize the real-valued weights and activations to fixed-point representa-
tions, so that the model size is reduced and inferences can use low-cost fixed-point MAC operations.
To further reduce inference computing overhead, prior works (Kim & Smaragdis, 2016; Xu et al.,
2018; Guo et al., 2017; Tang et al., 2017; Rastegari et al., 2016; Lin et al., 2017) quantize weights
and activations into multi-bit binary codes of {-1, +1}s. Rather than real-valued MACs, inferences
of these quantized models depend on bit-wise logic operations, i.e., XNORs and popcounts. These
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traditional quantization techniques either simply assign a single QBN to the whole CNN or require
domain experts to determine a QBN for each layer of a CNN.

Table 1: The search space size of network quantization. QBN ∈ [0, 32], where 0 means the com-
ponent is pruned. nlayer is the layer number of the network.

quantization granularity search space size (weight × activation)

network-wise 33× 33
layer-wise 33nlayer × 33nlayer

kernel-wise 33
∑nlayer

i=1 couti × 33nlayer

Kernel-wise quantization. As Table 1 shows, almost all prior works (Lin et al., 2016; Kim &
Smaragdis, 2016; Rastegari et al., 2016; Lin et al., 2017; Guo et al., 2017; Zhou et al., 2017; Jacob
et al., 2018; Tang et al., 2017; Xu et al., 2018; McKinstry et al., 2018; Zhang et al., 2018) categorized
as the network-wise quantization focus on searching a QBN ∈ [0, 32] for all weights, and searching
another QBN for all activations in a CNN. Totally, there are only 1089 combinations of the QBN
configuration for the network-wise quantization. The layer-wise quantization (Wang et al., 2019)
searches a QBN ∈ [0, 32] for all weights of a convolutional layer, and decides another QBN for all
activations of the same layer. The QBN search space size of the layer-wise quantization substantially
increases to 33nlayer × 33nlayer , where nlayer is the layer number of a CNN. Recent works (Zeng
et al., 2019; Choukroun et al., 2019b; Zhang et al., 2018; Li et al., 2019; Krishnamoorthi, 2018;
Sasaki et al., 2019) observe various weight kernels of a convolutional layer have different amounts
of redundancy, and quantize each weight kernel independently for higher accuracy. To exploit differ-
ent amounts of redundancy among different weight kernels, these kernel-wise network quantization
techniques should have searched a QBN for each kernel of each convolutional layer, and assigned
a QBN for each activation layer in a CNN. However, the search space size of the kernel-wise net-

work quantization is 33
∑nlayer

i=1 couti × 33nlayer , where couti is the number of weight kernels (output
channels) of the ith layer. No prior work tries to search such huge design space.

Table 2: The comparison of DRL-based techniques for quantization and pruning.
feature AMC ReLeQ HAQ AutoQ

search for activations and weights � � � �
kernel-wise quantization � � � �
hierarchical DRL � � � �
shaped intrinsic reward � � � �

AutoML. Recent works take advantage of DRL (Baker et al., 2016; Zoph et al., 2017), genetic al-
gorithm (Suganuma et al., 2017; Stanley & Miikkulainen, 2002) and Bayesian Optimization (Kan-
dasamy et al., 2018; Stewart & Stalzer, 2018) to automatically architect CNNs for higher inference
accuracy. Their network architectures outperform many human-designed neural networks. The
weight channel pruning is automatically conducted by DRL (He et al., 2018) and genetic algo-
rithm (Wang et al., 2018). ReLeQ (Elthakeb et al., 2018) quantizes only the weights of each layer
of a CNN by DRL, while HAQ (Wang et al., 2019) performs the layer-wise quantization for both
weights and activations via a DRL agent. No prior quantization or pruning work relies on hier-
archical DRL. Table 2 compares AutoQ against prior DRL-based techniques for quantization and
pruning. AutoQ is the first work to automatically quantize each weight kernel and each activation
layer of a pre-trained CNN model for mobile devices by hierarchical DRL.

3 AUTOQ

Overview. We do not aim to present a new network quantization technique, but we formulate the
search of a QBN for each weight kernel and each activation layer as a hierarchical DRL problem.
We propose a two-level hierarchical DRL technique, AutoQ, to automatically quantize the weights
in the kernel-wise manner and the activations in the layer-wise fashion. We build the state space,
action and goal space, extrinsic and intrinsic reward functions and a hierarchical DRL agent for
AutoQ. Although we use the state-of-the-art learned quantization technique, LQ-Nets (Zhang et al.,
2018), to quantize weight kernels and activation layers with the QBNs found by AutoQ, future novel
quantization techniques can be easily integrated to AutoQ to improve the inference accuracy of the
quantized networks. In the extrinsic reward, besides the inference latency and energy (Wang et al.,
2019), AutoQ also considers the FPGA area overhead critical to low-cost mobile devices.
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Figure 3: The working flow of AutoQ (HLC: high-level controller, LLC: low-level controller).

Working Flow. For an nlayer-layer CNN, the weight is defined as W ∈ R
nlayer×cout×cin×ww×hw ,

where nlayer is the number of layers; cout denotes the number of kernels (output channels); cin
means the number of input channels; ww indicates the kernel width; and hw is the kernel height.
The activation is defined as A ∈ R

nlayer×cin×wa×ha , where wa is the feature map width; and ha
means the feature map height. The working flow of AutoQ is shown in Figure 3. AutoQ consists of a
high-level controller (HLC) and a low-level controller (LLC). The HLC quantizes the network layer
by layer, while the LLC searches a QBN for each weight kernel in a layer. � At first, AutoQ re-
ceives an observation state[Li,Kj ] from the environment that is the quantized network model, where
state[Li,Kj ] includes the information of the CNN architecture. � The HLC makes a goal gLi that
is the QBN for the activation layer Li. The flow then jumps to �. Or the HLC generates a goal gLi

which is the average QBN of all weight kernels in the layer Li for the LLC. � The LLC produces an
action a[Li,Kj ], QBN, for the weight kernelKj of the layer Li. For the entire layer Li, the LLC aims
to reach the goal gLi

of the HLC. � The environment sends the network quantization and hardware
configuration to the fast and accuracy machine-learning-based hardware overhead estimator. � The
hardware overhead estimator returns the energy consumption, area overhead and inference latency
for the current quantization and hardware configuration. 	 With the hardware overhead and infer-
ence accuracy, the environment generates an extrinsic reward eRd[Li,Kj ] for AutoQ to evaluate the
LLC action. 
 Based on all actions of LLC for the layer Li, the HLC provides an intrinsic reward
iRdLi

to tell how well the goal is implemented by the LLC.

State Space. A state state[Li,Kj ] (observation) is represented by

state[Li,Kj ] = (Li,Kj , cin, cout, skernel, sstride, sfeature, bdw, bw/a, gLi−1
, a[Li,Kj−1]) (1)

where Li is the layer index; Kj means the weight kernel index; cin indicates the number of input
channels; cout denotes the number of kernels; skernel is the kernel size; sstride is the stride; sfeature
is the input feature map size; bdw binarily indicates depthwise convolution or not; bw/a binarily
represents weight or activation; gLi−1

is the goal (average QBN) of the last layer; and a[Li,Kj−1] is
the action (QBN) of the last kernel in the Li layer. For each variable in state[Li,Kj ], we normalize

it to [0, 1]. If the layer is a fully-connected layer, we set skernel = 1, sstride = 0, and bdw = 0.

Goal and Action Space. The HLC produces the average QBN for all weight kernels of each layer
or the QBN for each activation layer as a goal, while the LLC generates a QBN for each weight
kernel in a layer as an action. The HLC goal gLi

for the Li layer uses a continuous space and can
be any real value between 1 and goalmax, where goalmax is the maximum average QBN for a layer
and we set it to 8. If the Li layer is an activation layer, we round the real-valued gLi

to the discrete
value of roundup(1 + gLi

· (goalmax − 1)). Although the LLC action is an integer between 0 and
actionmax, it still uses a continuous space to capture the relative order, i.e., 2-bit is more aggressive
than 3-bit, where actionmax is the maximum QBN for a kernel and we set it to 8. For the Kj kernel
of the Li layer, the LLC generates the continuous action ra[Li,Kj ] that is in the range of [0, 1], and

round it up to the discrete value a[Li,Kj ] = roundup(ra[Li,Kj ] · actionmax).
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Extrinsic Reward. After an action a[Li,Kj ] is taken, AutoQ arrives at a new state state[Li,Kj+1]

and receives an extrinsic reward eRd from the environment. The HLC aims to maximize the accu-

mulative extrinsic reward eRd =
∑
i

∑
j γ

∑
i couti+j−1

eRd eRd[Li,Kj ], where γeRd ∈ [0, 1) is a decay

factor. The immediate extrinsic reward can be represented by

eRd[Li,Kj ](NC,HC) = log(
accuracy(NC)ψacc

lat(NC,HC)ψl · en(NC,HC)ψe · area(NC,HC)ψa
) (2)

whereNC is the network configuration;HC means the hardware configuration, e.g., memory band-
width; accuracy(NC) indicates the inference accuracy; lat is the inference latency of the network
NC running on the hardware HC; en represents the inference energy of NC running on HC;
area is the FPGA area (hardware cost) used by NC on HC; ψacc, ψl, ψe and ψa are user-defined
factors deciding the impact of inference accuracy, latency, energy and FPGA area on the extrinsic
reward. By different values of user-defined factors, AutoQ implements the resource-constrained
and accuracy-guaranteed searches. For resource-constrained applications, e.g., low-power drones,
AutoQ sets ψacc = 1, ψl = 0, ψe = 0 and ψa = 0 to achieve the best accuracy given the maximum
amount of hardware resources (latency, energy, and FPGA area). This extrinsic reward offers no
incentive for lower QBNs, so AutoQ reduces the QBN by limiting the action space. AutoQ allows
arbitrary action at the first few layers and starts to limit the action when it finds that the hardware
resource budget is insufficient even after using the smallest QBN for all the following layers. For
accuracy-guaranteed applications, e.g., fingerprint locks, AutoQB sets ψacc = 2, ψl < 1, ψe < 1
and ψa < 1 to obtain the shortest latency, the minimal energy, and the smallest hardware cost with
no accuracy loss.

Intrinsic Reward. Based on the goal gLi produced by the HLC for the Li layer, the LLC generates
cout actions a[Li,K0] ∼ a[Li,Kcout−1] at the states state[Li,K0

] ∼ state[Li,Kcout−1]. AutoQ then

arrives the state state[Li,Kcout−1], where it receives an intrinsic reward iRd and maximizes the

accumulative intrinsic reward iRd =
∑
j γ

j−1
iRd iRd[Li,Kj ], where γiRd ∈ [0, 1) is a decay factor

and iRd[Li,Kj ] indicates the intrinsic reward for the weight kernel Ki of the layer Li. The LLC
produces actions to help the HLC to maximize the extrinsic reward, so it should aim to complete the
goal of the HLC and to maximize the extrinsic reward. But at the beginning of the AutoQ training,
the extremely low extrinsic reward due to the random goals of the HLC prevents the LLC from
efficiently learning from the environment. We propose a shaped reward as the intrinsic reward for
the LLC to take both the goal completion and the extrinsic reward into consideration, and to enable
fine-grained low-level behavior learning. The intrinsic reward can be represented by

iRdLi
= (1− ζ) · (−||gLi

· cout −
cout−1∑

j=0

aLi,Kj
||2) + ζ ·

cout−1∑

j=0

eRdLi,Kj
(3)

where ζ is a user-defined factor dynamically enlarging from 0.1 to 0.8 as the number of training
epochs increases. When ζ is small, the HLC has stronger influence on the LLC. On the contrary,
when ζ = 1, the LLC maximizes only the accumulative extrinsic reward.

Hardware Overhead Estimator. A recent work (Wang et al., 2019) estimates the hardware latency
and energy by physical FPGA accelerators. However, a typical synthesis for a CNN model on a
FPGA costs > 30 minutes (Gopinath et al., 2019). Invoking a FPGA synthesis for each action will
make AutoQ unacceptably slow. We adopt fast and accurate FPGA latency, area (Liu & Carloni,
2013) and power (Zhou et al., 2019) models to predict the inference latency, energy and FPGA area
for an arbitrary configuration of network and hardware. These machine-learning-based models are
highly accurate and can estimate the hardware overhead to compute the extrinsic reward of AutoQ
within several milliseconds.

Hierarchical DRL. AutoQ uses a HIerarchical Reinforcement learning with Off-policy correction
(HIRO) (Nachum et al., 2018), to implement the HLC and the LLC. The LLC is trained by incorpo-
rating gLi into the standard TD3 method (Nachum et al., 2018). So the low-level Q-value function
QLLCθLLC

is to minimize the error εLLC(state[Li,Kj ], gLi , a[Li,Kj ], state[Li,Kj+1]), which is

(Q
LLC
θLLC

(state[Li,Kj ]
, gLi

, a[Li,Kj ]
) − iRdLi

− γiRd ·QLLC
θLLC

(state[Li,Kj+1], gLi
, μ

LLC
φLLC

(state[Li,Kj+1], gLi
)))

2

(4)
where μLLCφLLC

is trained to maximize QLLCθLLC
. We further augment μLLCφLLC

with Gaussian noises by

collecting the actions as N(μLLCφLLC
, σa[Li,Kj ]

), where N is a Gaussian distribution, and σa[Li,Kj ]
is
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the variance. During the exploitation, σa[Li,Kj ]
is initialized to 0.5 and decayed after each episode

exponentially. The HLC converts a series of high-level transition tuples

(s[Li,K0:Kcout−1], gLi
, a[Li,K0:Kcout−1], eRd[Li,K0:Kcout−1], s[Li+1,K0]) (5)

to state-goal-reward transitions

(s[Li,K0], gLi ,
∑

eRd[Li,K0:Kcout−1], s[Li+1,K0]) (6)

where a[Li,K0:Kcout−1] denotes the sequence of a[Li,K0] ∼ a[Li,Kcout−1]; and eRd[Li,K0:Kcout−1]

means the sequence of eRd[Li,K0] ∼ eRd[Li,Kcout−1]. AutoQ stores these state-goal-reward transi-
tions into the replay buffer. However, since transitions obtained from the past LLCs do not accurately
reflect the actions that would occur if the same goal was used with the current LLC, AutoQ has to
introduce a correction translating old transitions into ones that agree with the current LLC. AutoQ
re-labels the high-level transition (s[Li,K0], gLi ,

∑
eRd[Li,K0:Kcout−1], s[Li+1,K0]) with a different

goal ˜gLi
chosen to maximize the probability μLLCφLLC

(a[Li,K0:Kcout−1]|s[Li,K0:Kcout−1], ˜gLi
). AutoQ

computes 10 candidate goals sampled randomly from a Gaussian distribution centered at gLi
, and

selects the minimal goal to re-label the experience.

Quantization and Finetuning. During a search, we quantize the model by the learned quantization
technique (Zhang et al., 2018), and finetune the quantized model for ten epochs to recover the
accuracy using stochastic gradient descent (SGD) with a fixed learning rate of 10−3 and momentum
of 0.9. We randomly select 100 categories from the ImageNet to accelerate the model finetuning.
After the search is done, we quantize the model with the best policy found by AutoQ and finetune it
on the full dataset.

Implementation Details. An AutoQ agent, i.e., HLC or LLC, consists of an actor network and
a critic network. Both share the same architecture, i.e., two hidden layers, each of which has 300
units. For the actor network, we add an additional sigmoid function producing an output in the range
of [0, 1]. We use a fixed learning rate of 10−4 for the actor network and 10−3 for the critic network.
AutoQ trains the networks with the batch size of 64 and the replay buffer size of 2000. AutoQ first
explores 100 episodes with a constant noise, i.e., δa[Li,Kj ]

= 0.5 for the LLC and δg[Li]
= 0.5 for

the HLC, and then exploits 300 episodes with exponentially decayed noise.

Storage Cost. We need to record a 4-bit QBN ranging from 0 to 8 for each activation layer and
each weight kernel of a convolutional layer. The storage overhead of AutoQ is ∼ 0.1% of the size
of various CNN models. For instance, ResNet-18 found by resource-constrained AutoQ requires
8.3MB to store its quantized model in Table 3. The storage overhead of AutoQ is only 0.07%.

4 EXPERIMENTAL RESULTS

Experimental Settings. To evaluate AutoQ, we selected several CNN models including ResNet-18,
ResNet-50, SqueezeNetV1 (Iandola et al., 2016) and MobileNetV2 (Sandler et al., 2018). The CNN
models are trained on ImageNet including 1.26M training images and tested on 50K test images
spanning 1K categories of objects. We evaluated the inference performance, energy consumption
and FPGA area of the CNN models quantized by AutoQ on a Xilinx Zynq-7020 embedded FPGA.
On the FPGA, we implemented a temporal CNN accelerator (Umuroglu et al., 2019b) that uses
bit-serial multipliers, each of which computes with one-bit digits from multiple weights and their
corresponding activations in parallel at one time, and then accumulates their partial products.

4.1 OVERALL PERFORMANCE

Resource-constrained Quantization. We make AutoQ perform the resource-constrained searches
by imposing a latency constraint and setting ψacc = 1, ψl = 0, ψe = 0 and ψa = 0 in the extrinsic
reward. With such a setting, AutoQ aims to search for the best inference accuracy given the longest
latency constraint, which is set to the inference latency of the 4-bit network-wise quantized CNN
models. We compare the kernel-wise AutoQ quantized models against the layer-wise Hardware-
Aware Automated Quantization (HAQ) (Wang et al., 2019) quantized models and the 4-bit network-
wise quantized models in Table 3. We used the LQ-Nets quantization (Zhang et al., 2018) to quantize
and finetune the models in all three schemes. The network-wise scheme uses 4-bit to quantize the
whole models, while the layer-wise scheme searches a QBN for weights of each layer, and chooses
another QBN for activations of the same layer. AutoQ chooses a QBN for each weight kernel, and
selects another QBN for each activation layer of a CNN. In Table 3, the average QBN of weights
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Table 3: Network Quantization by AutoQ (A-QBN: the average QBN of activations; W-QBN: the
average QBN of weights; LAT: inference latency).

model scheme
resource-constrained accuracy-guaranteed

top-1 top-5 A-QBN W-QBN LAT top-1 top-5 A-QBN W-QBN LAT
err (%) err(%) (bit) (bit) (ms) err (%) err(%) (bit) (bit) (ms)

ResNet-18

network-wise 32.7 12.32 4 4 296.8 32.7 12.32 4 4 296.8
layer-wise 31.8 11.92 3.32 4.63 290.9 32.5 11.90 3.37 3.65 189.6

kernel-wise 30.22 11.62 4.12 3.32 286.3 32.6 11.82 3.02 2.19 125.3
original 30.10 11.62 16 16 1163 30.10 11.62 16 16 1163

ResNet-50

network-wise 27.57 9.02 4 4 616.3 27.57 9.02 4 4 616.3
layer-wise 26.79 8.32 4.23 3.51 612.3 27.49 9.15 4.02 3.12 486.4

kernel-wise 25.53 7.92 3.93 4.02 610.3 27.53 9.12 3.07 2.21 327.3
original 25.20 7.82 16 16 2357 25.20 7.82 16 16 2357

SqueezeNetV1

network-wise 45.67 23.12 4 4 43.1 45.67 23.12 4 4 43.1
layer-wise 44.89 21.14 3.56 4.27 42.1 45.63 23.04 3.95 3.28 25.5

kernel-wise 43.51 20.89 4.05 3.76 41.6 45.34 23.02 3.29 2.32 12.5
original 43.10 20.5 16 16 127.3 43.10 20.5 16 16 127.3

MobileNetV2

network-wise 31.75 11.67 4 4 37.4 31.35 11.67 4 4 37.4
layer-wise 30.98 10.57 3.57 4.22 36.9 31.34 10.57 3.92 3.21 23.9

kernel-wise 29.20 9.67 4.14 3.67 36.1 31.32 11.32 3.13 2.26 10.2
original 28.90 9.37 16 16 123.6 28.90 9.37 16 16 123.6

(W-QBN) can be calculated by
∑nlayer

Li=1

∑ccouti

Kj=1Weight QBN[Li,Kj ]∑nlayer

i=1 ccouti
(7)

where couti is the number of output channels in the layer Li and Weight QBN[Li,Kj ] is the QBN
for the Kj th weight kernel in the layer Li. The average QBN of activations (A-QBN) is computed

as

∑nlayer
Li=1 Act QBNLi

nlayer
, where Act QBNLi

is the QBN for all activations of the layer Li. Compared

to the layer-wise quantization, AutoQ improves the top-1 inference accuracy by > 1.25% when
spending almost the same inference latency. Compared to the 16-bit full-precision models, the
models quantized by AutoQ degrade the inference accuracy by at most only 0.41%, but reduce the
inference latency by 71.2% on average.

Accuracy-guaranteed Quantization. We run AutoQ to do the accuracy-guaranteed searches by
setting ψacc = 2, ψl = 0.5, ψe = 0 and ψa = 0 in the extrinsic reward. Such an extrinsic reward
drives AutoQ to quantize the models to achieve the shortest inference latency without significant
accuracy loss. Compared to the layer-wise scheme, AutoQ substantially reduces the inference la-
tency by 42.2% while achieving a similar (averagely -0.1%) top-1 inference accuracy. Compared
to ResNet-18 and ResNet50, the compact models such as SqueezeNetV1 suffer from larger top-1
accuracy degradation, i.e., -0.3% in a accuracy-guaranteed search of AutoQ.

Figure 4: The ave. QBNs in various layers. Figure 5: The weight kernel QBNs in a layer.

4.2 DETAILED ANALYSIS

Kernel-wise Search. AutoQ can assign a QBN to each kernel of a convolutional layer. The aver-
age weight QBN and the average activation QBN of each ResNet-18 layer found by an accuracy-
guaranteed AutoQ search are shown in Figure 4. Both the network-wise and layer-wise quantization
techniques use only one QBN to quantize all weight kernels in a convolutional layer, and quantize
all activations of the layer by another QBN. On the contrary, AutoQ searches a QBN for each weight
kernel. Compared to a CNN model quantized by the network-wise or layer-wise quantization tech-
nique, the same model quantized by the kernel-wise AutoQ can achieve similar inference accuracy
but with a smaller average QBN in each layer. We also show the weight kernel QBNs of the L14

layer of ResNet-18 produced by resource-constrained AutoQ searches in Figure 5. AutoQ automati-
cally identifies which weight kernel has a smaller (larger) variance and thus less (more) redundancy,
so that it can assign a larger (smaller) QBN to the weight kernel. For instance, as Figure 1 shows,
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compared to the 53th weight kernel (top-right), the 52th weight kernel (top-left) of ResNet-18 has
a smaller weight distribution variance. Therefore, in Figure 5, AutoQ assigns a smaller QBN to the
52th weight kernel but provides the 53th weight kernel a larger QBN.

Figure 6: The DRL scheme comparison.

Hierarchical DRL Agent with Shaped In-
trinsic Reward. We evaluated and compared
our hierarchical-DRL-based AutoQ against
the traditional one-level DDPG-based DRL
adopted by a recent layer-wise quantization
technique, HAQ (Wang et al., 2019). The re-
ward comparison of different techniques during
the kernel-wise quantization on MobileNetV2
is shown in Figure 6. HAQ and AutoQ both support resource-constrained searches, but HAQ cannot
support accuracy-guaranteed searches. So their rewards are just the inference accuracy. Through the
goals of the HLC and the actions of the LLC, AutoQ can find a QBN for each weight kernel and
achieve > 70% accuracy much faster than the DDPG-based DRL, i.e., it reaches ∼ 70% accuracy
after only 200 episodes. However, the DDPG-based DRL is stuck with 20% inference accuracy until
250 episodes. The hierarchical-DRL-based AutoQ significantly accelerates the search space explo-
ration of the kernel-wise network quantization. Although AutoQ uses a prior hierarchical DRL agent
HIRO (Nachum et al., 2018) to search a QBN for each weight kernel, we propose a novel shaped
intrinsic reward considering both the completion of the HLC goals and the extrinsic reward to ac-
celerate the search. The intrinsic reward of HIRO takes only the completion of the HLC goals into
consideration. The LLC of HIRO cannot directly learn from the environment. Therefore, compared
to AutoQ, it takes extra 200 episodes for HIRO to reach only 60% accuracy as shown in Figure 6.

Extrinsic Reward. Unlike the reward of the DDPG-based layer-wise HAQ (Wang et al., 2019)
considering only the inference accuracy, the extrinsic reward of AutoQ can balance the trade-off be-
tween the inference accuracy, latency, energy consumption and FPGA area by enabling the accuracy-
guaranteed search. By setting ψacc = 2, ψl = 0.5, ψe = 0.5 and ψa = 0.5, AutoQ takes the in-
ference accuracy, latency, energy and FPGA area into consideration during an accuracy-guaranteed
search. For instance, AutoQ can find two kernel-wise QBN configurations having similar inference
accuracy, latency and energy for MobileNetV2. We cannot differentiate these two configurations
by using only the HAQ reward. However, the first configuration consumes 94% of the FPGA area,
while the other configuration occupies 85% of the FPGA area. AutoQ can identify the second QBN
configuration as a better choice via its extrinsic reward.

(a) Latency. (b) Energy.

Figure 7: The comparison of latency and energy between temporal and spatial CNN accelerators.

Quantization Granularity. Besides the temporal CNN accelerator (Umuroglu et al., 2019b), the
kernel-wise quantized models found by the accuracy-guaranteed AutoQ can reduce the inference
latency on a spatial CNN accelerator, BitFunsion (Sharma et al., 2018), that relies on a 2D systolic
array of the fusion units spatially summing the shifted partial products of weights and activations.As
Figure 7 shows, compared to the layer-wise quantized models, on average, the kernel-wise quantized
models reduce the inference latency by 39.04% and decrease the inference energy by 33.34% on the
spatial CNN accelerator. Therefore, the kernel-wise quantized models greatly reduce the inference
latency and energy on both the temporal and spatial CNN accelerators. Prior works (Mellempudi
et al., 2017; Choukroun et al., 2019a) suggest it is possible to divide a weight kernel into several sub-
kernels and quantize each sub-kernel independently. We also use AutoQ to search a QBN for each
weight sub-kernel. As Figure 7 shows, the sub-kernel-wise quantized models cannot improve the
inference latency or energy on the spatial CNN accelerator consisting of systolic computing arrays.
Each dot-product operation of a sub-kernel-wise quantized model has to be split into several dot-
product operations to be accumulated together. A systolic computing array still has to be designed
to accommodate the weight sub-kernel with the largest QBN in a kernel. Therefore, we can see that
it is difficult for the fine-grained quantization schemes choosing a QBN for each weight unit that is a
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part of a kernel to further reduce the inference latency or energy on both the temporal and the spatial
CNN accelerators.

5 CONCLUSION

In this paper, we propose a hierarchical-DRL-based kernel-wise network quantization technique,
AutoQ, consisting of a HLC and a LLC. The HLC automatically searches an average weight QBN
and an average activation QBN for each convolutional layer. Based on the average weight QBN, the
LLC generates a QBN for each weight kernel in each layer. We also create a state space, a goal and
action space, an intrinsic reward and an extrinsic reward to support AutoQ. Particularly, our shaped
intrinsic reward enables the LLC to learn efficiently from the environment by considering both the
HLC goal completion and the environment extrinsic reward. Moreover, the extrinsic reward of
AutoQ can balance the inference accuracy, latency, energy consumption and FPGA area. Compared
to the models quantized by the state-of-the-art DRL-based schemes, on average, the same models
quantized by AutoQ reduce the inference latency by 54.06%, and decrease the inference energy
consumption by 50.69%, while achieving the same inference accuracy.
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